
ar
X

iv
:1

10
2.

57
72

v1
  [

qu
an

t-
ph

]  
28

 F
eb

 2
01

1

Entanglement of polar molecules in pendular states

Qi Wei,1, 2 Sabre Kais,2 Bretislav Friedrich,3 and Dudley Herschbach∗1

1Department of Physics, Texas A & M University, College Station, TX 77843, USA

2Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA

3 Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4-6, D-14195 Berlin, Germany

Abstract

In proposals for quantum computers using arrays of trapped ultracold polar molecules as qubits, a strong

external field with appreciable gradient is imposed in order to prevent quenching of the dipole moments

by rotation and to distinguish among the qubit sites. That field induces the molecular dipoles to undergo

pendular oscillations, which markedly affect the qubit states and the dipole-dipole interaction. We evaluate

entanglement of the pendular qubit states for two linear dipoles, characterized by pairwise concurrence, as

a function of the molecular dipole moment and rotational constant, strengths of the external field and the

dipole-dipole coupling, and ambient temperature. We also evaluate a key frequency shift,△ω, produced by

the dipole-dipole interaction. Under conditions envisioned for the proposed quantum computers, both the

concurrence and△ω become very small for the ground eigenstate. In principle, such weak entanglement

can be sufficient for operation of logic gates, provided the resolution is high enough to detect the△ω shift

unambiguously. In practice, however, for many candidate polar molecules it appears a challenging task to

attain adequate resolution. Simple approximate formulas fitted to our numerical results are provided from

which the concurrence and△ω shift can be obtained in terms of unitless reduced variables.
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I. INTRODUCTION

Since the original proposal by DeMille [1], arrays of ultracold (< 1 mK) polar molecules have

come to be considered among the most promising platforms to implement a quantum computer [2–

13]. His proposal describes a complete scheme for quantum computing using as qubits the dipole

moments of diatomic molecules, trapped in a one-dimensional optical lattice, partially oriented

in an external electric field, and coupled by the dipole-dipole interaction. The qubit states are

individually addressable because the field has an appreciable gradient so the Stark effect is different

for each location in the array.

A subsequent proposal has advocated coupling polar molecules into a quantum circuit using

superconducting wires [14]. Such capacitive, electrodynamic coupling to transmission line res-

onators is analogous to coupling to Rydberg atoms and Cooper pair boxes [15, 16]. The molecular

qubits are entangled via the coupling to the transmission lines rather than direct dipole-dipole in-

teractions. Again, addressability of the qubits is achieved via the Stark effect by means of local

gating of an electrostatic field.

Entanglement is a major ingredient in most quantum computation algorithms. It is among the

defining features of quantum mechanics, with no classical analog [17–19]. A pure state of a pair

of quantum systems is said to be entangled if its wavefunction cannot be factored into a product

of wavefunctions of the individual partners. For example, the singlet state of two spin-1
2 particles,

1√
2
(| ↑↓〉 − | ↓↑〉) is entangled. A mixed state is entangled if it cannot be represented as a mixture

of factorizable pure states. The allure of quantum information processing has recently motivated

studies of entanglement for a variety of potential qubit systems[5, 6, 9, 20–32]. These include

one-dimensional arrays of localized spins, coupled through exchange interactions and subject to

an external magnetic field [23] and analogous treatments of trapped electric dipoles coupled by

dipole-dipole interactions [32].

However, the previous studies of entanglement of electric dipoles have not adequately consid-

ered how the external electric field, integral to current designs for quantum computers using polar

molecules, affects both the qubit states and the dipole-dipole interaction. For the simplest case of a

1Σ diatomic molecule, the qubit eigenstates resulting from the Stark effect are linear combinations
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of spherical harmonics, with coefficients that depend markedly on the field strength. These are ap-

propriately termedpendular states [33], or field-dressed states [34]. In such states, the orientation

of the dipole moment has a broad angular range (not solely along or opposed to the field direction

as are spins in a magnetic field). Likewise, the dipole-dipole interaction for molecules in pendular

states is much different than that for dipoles in the absence of an external field.

Here we evaluate entanglement, as measured by pairwise concurrence, for the prototype case

of two diatomic polar molecules in pendular states, ultracold and trapped in distinct optical lattice

sites. The molecules are represented as identical rigid dipoles, undergoing angular oscillations,

a fixed distance apart and subject either to a different or to the same external electric field. We

examine the dependence of the concurrence on three dimensionless variables. The first governs

the energy and intrinsic angular shape of the qubits (when the dipole-dipole interaction is switched

off). It is µε/B, the ratio of the Stark energy (magnitude of permanent dipole moment times

electric field strength) to the rotational constant (proportional to inverse of molecular moment of

inertia). The second variable governs the magnitude of the dipole-dipole coupling. It isΩ/B, with

Ω = (µ2/r3), the square of the permanent dipole moment divided by the cube of the separation

distance. The third variable,kBT/B, is the ratio of thermal energy (Boltzmann constant times

Kelvin temperature) to the rotational constant.

We also examine an aspect related to but distinct from entanglement. The operation of a quan-

tum gate [35] such as CNOT requires that manipulation of one qubit (target) depends on the state

of another qubit (control). This is characterized by the shift,△ω, in the frequency for transition

between the target qubit states when the control qubit state is changed. The shift△ω, which is due

to the dipole-dipole interaction, must be keptsmaller than the differences required to distinguish

among addresses of qubit sites. Under conditions envisaged in the proposed designs [1–5, 13] for

quantum computing with trapped polar molecules,Ω/B < 10−4, and for the ground eigenstate both

the entanglement and frequency shift△ω become very small. For CNOT and other operations, en-

tanglement needs to be large, but can be induced dynamically, so need not be appreciable in the

ground eigenstate. Yet a small△ω shift can only suffice if the resolution is high enough to detect

the shift unambiguously. From estimates of the line widths of transitions between the pendular

qubit states, we find it an open question whether adequate resolution can be obtained for typical
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candidate diatomic molecules.

II. ENTANGLEMENT FOR TWO DIPOLES IN PENDULAR STATES

A. Hamiltonian terms and pendular qubit states

The Hamiltonian for a single trapped linear polar molecule in an external electric field is

H =
p2

2m
+ Vtrap(r) + BJ2 − µ · ε (1)

where the molecule, with massm, rotational constantB and body-fixed dipole momentµ, has

translational kinetic energyp2/2m, potential energyVtrap within the trapping field, and rotational

energyBJ2 as well as interaction energyµ·ε with the external fieldε. In the trapping well, at

ultracold temperatures, the translational motion of the molecule is quite modest and very nearly

harmonic;p2/2m+Vtrap(r) thus is nearly constant and can be omitted from the Hamiltonian. There

remains the rotational kinetic energy and Stark interaction,

HS = BJ2 − µεcosθ (2)

which represent a spherical pendulum withθ the polar angle between the molecular axis and the

field direction. Figure 1(a) displays the lowest few pendular eigenenergies [36] for a1Σ diatomic

(or linear) molecule, as functions ofµε/B. These are labeled with the familiar quantum numbers

J̃, M that specify the field-free rotational states. However,J̃ wears a tilde to indicate it is no

longer a good quantum number since the Stark interaction mixes the rotational states, whereas M

(denoting the projection of theJ-vector on the field direction) remains good as long as azimuthal

symmetry aboutε is maintained. As proposed by DeMille, the qubit states|0〉 and|1〉 are chosen

as the lowest M= 0 pendular states, with̃J = 0 and 1, respectively. These are superpositions of

Y j,0 spherical harmonics,

|0〉 =
∑

j

a jY j,0(θ, ϕ), |1〉 =
∑

j

b jY j,0(θ, ϕ) (3)

Figure 2 plots the coefficients as functions ofµε/B. Figure 3 displays the angular distributions

of the pendular qubit states. For|0〉 the distribution is unimodal and asµε/B increases the dipole
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orientation increasingly favors the direction of theε-field (at θ = 0o). For |1〉 the distribution

is bimodal because, with M= 0, the dipole is rotating perpendicular to theJ-vector, which is

perpendicular to the field direction. Forε = 0, the dipole orientation is equally probable in the

hemispheres toward (θ < 90o) or opposite (θ > 90o) to the field direction. Asµε/B increases, the

pinwheeling dipole favors the opposite hemisphere because there its motion is slowed because the

Stark interaction becomes unfavorable. However, whenµε/B becomes large enough, pinwheeling

is inhibited and converted into pendular libration about the field direction, so the dipole orientation

shifts to favor the toward hemisphere.

Adding a second trapped polar molecule, identical to the first but distancer12 apart, introduces

in addition to its pendular term the dipole-dipole coupling interaction,

Vd−d =
µ1 · µ2 − 3(µ1 · n)(µ2 · n)

|r1 − r2|3
(4)

Heren denotes a unit vector alongr12. In the presence of an external field, it becomes appropriate

to expressVd−d in terms of angles related to the field direction. As shown in Appendix A, the result

after averaging over azimuthal angles (that for M= 0 states are uniformly distributed) reduces to

Vd−d = Ω(1− 3cos2α)cosθ1cosθ2 (5)

whereΩ = µ2/r3
12, the angleα is between ther12 vector and the field direction and polar anglesθ1

andθ2 are between theµ1 andµ2 dipoles and the field direction. Until later (Sec. IV), we consider

the external field magnitude and direction to be the same at the sites of both the polar molecules.

B. Entanglement measured by pairwise concurrence

We will deal with the entanglement of formation,E(ρ), which characterizes the amount of

entanglement needed in order to prepare a state described by a density matrix,ρ. (Henceforth, we

termE(ρ) just ”entanglement”, for short.) Wootters [37, 38] has shown thatE(ρ) for a general state

of two qubits can be quantified by the pairwiseconcurrence, C(ρ), which ranges between zero and

unity. The relation can be written as

E(ρ) = ξ(C(ρ)) (6)

5



whereξ is given by

ξ(C) = h













1+
√

1− C2

2













(7)

with h(x) = −xlog2x− (1− x)log2(1− x). The functionξ(C) increases monotonically between zero

and unity asC varies from 0 to unity. The concurrence is given by

C(ρ) = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

}

(8)

where theλi’s are the eigenvalues, in decreasing order, of the non-Hermitian matrixρρ̃, whereρ̃ is

the density matrix of the spin-flipped state, defined as

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy) (9)

with ρ∗ the complex conjugate ofρ andσy a Pauli matrix. The parent density matrixρ is taken

in the basis formed by combining the pendular qubit states; for a pair of two-level particles, this

comprises the four state vectors{|00〉, |01〉, |10〉, |11〉}.

In order to evaluate thermal entanglement, we need a temperature dependent density matrix,

ρ = exp(−βH)/Z(T ), with β = 1/kBT andZ(T ) the partition function

Z(T ) = tr[exp(−βH)] =
∑

i

gie
−βEi (10)

with Ei theith eigenvalue andgi its degeneracy. Hence the density matrix can be written as

ρ(T ) =
1
Z

N
∑

i

e−βEi |Ψi〉〈Ψi| (11)

where |Ψi〉 is the ith eigenfunction. From the density matrixρ(T ), we can obtain the reduced

density matrix for any pair of dipoles and thence evaluate the concurrence at any temperature.

III. CONCURRENCE OF TWO DIPOLES IN PENDULAR STATES

We illustrate the calculation of pairwise concurrence forN = 2 dipoles. The Hamiltonian,HS 1

+ HS 2 + Vd−d, when set up in a basis of the qubit pendular states,{|00〉, |01〉, |10〉, |11〉}, takes the

6



form,

HS1 +HS2 =
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(12)

Vd−d = Ω(1− 3cos2α)
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(13)

whereW0 andW1 are the eigenenergies of the pendular qubit states|0〉, and|1〉, in the absence of

the dipole-dipole interaction. Primes attached to quantities for the second dipole indicate that the

external field magnitude may differ at its site (although, as noted above, we postpone evaluating

that case until Sec. IV). InVd−d the basis qubit states are linked by matrix elements containing

factors arising from the orientation cosines in Eq. (5); these are

C0 = 〈0|cosθ|0〉; CX = 〈0|cosθ|1〉; C1 = 〈1|cosθ|1〉 (14)

C0 andC1 are the expectation values of cosθ in the pendular states|0〉 and |1〉, respectively, so

represent for those states the effective dipole moment projections displayed in Fig.1(b).CX cor-

responds to an exchange interaction or transition dipole moment between the qubit states. Both

the Stark eigenenergiesWi and the dipole-dipole elementsCk are functions ofµε/B. As seen in

Fig.1(b), asµε/B is increasedC0 becomes increasingly positive, whereasC1 is increasingly neg-

ative until aboutµε/B = 2, then climbs to zero at aboutµε/B = 4.9 and thereafter is increasingly

positive. The rangeµε/B = 2 to 4 is recommended for the proposed quantum computer designs

[1, 16]; within that range, the difference in the effective dipole moments of the qubits,|C0 − C1|,

varies only modestly.

If the dipole-dipole interaction is omitted (Ω = 0), the eigenvectors ofHS 1 + HS 2 are simply

Ψ1 = |00〉, Ψ2 = 2−1/2(|10〉 − |01〉), Ψ3 = 2−1/2(|10〉 + |01〉), Ψ4 = |11〉, corresponding to the

eigenenergies of Eq.(12). ForΨ1 andΨ4, which are obviously nonentangled states, the concur-

rence is zero. ForΨ2 andΨ3, which exemplify fully entangled states, the concurrence is unity;
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these are termed Bell states [17].

When the dipole-dipole coupling is included, an analytical solution to obtain eigenstates is only

feasible when the external field is switched off. As shown in Appendix B, in that limit analytical

results can be obtained for each step in evaluating the concurrence, both for the four individual

eigenstates and their combination in the thermal concurrence. As seen in Fig. 1, forµε/B = 0, the

energy terms in Eq.(12) involve merelyW0 = 0 andW1 = 2B. In theVd−d matrix of Eq.(13), the

cosine matrix elementsC0 andC1 vanish andCX = 3−1/2; thus, the only nonzero elements occur

along the antidiagonal and (forα = 90o) are justΩC2
X. The results for this zero-field limit prove

useful in interpreting those for the general pendular case.

The limits withΩ = 0 and/or µε/B = 0 motivate setting up the Hamiltonian of Eqs.(12) and

(13), for the (unprimed) case with the same external field at both dipole sites, using a basis of Bell

states:
|11〉 + |00〉
√

2
,
|11〉 − |00〉
√

2
,
|10〉 + |01〉
√

2
,
|10〉 − |01〉
√

2
, (15)

In this basis, the Hamiltonian becomes

HS1 +HS2 =
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(16)

Vd−d = Ω(1− 3cos2α)
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(17)

WhereW± = W1±W0 andÂ± = 1
2(C2

1+C2
0)±C2

X , B̂ = 1
2(C2

1−C2
0), Ĉ± = CX(C1±C0), D̂± = C1C0±C2

X .

This makes explicit a consequence of the symmetry between the (unprimed) sites [39]. In the Bell

basis, the Hamiltonian factors, with the state 2−1/2(|10〉−|01〉) in a 1×1 block, so that state remains

maximally entangled regardless of the value ofµε/B orΩ/B.

Figure 4 plots, forµε/B = 0, 2 and 4.9, the eigenenergy and pairwise concurrence versusΩ/B

= 0 to 6 for the four eigenstates of the two-dipole system. The eigenstates are numbered from
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1 to 4 in order of increasing energy. Forµε/B = 0, both eigenstates 2 and 3 are Bell states,

with eigenenergiesEi/B = 2 − (Ω/6B) and 2+ (Ω/6B), respectively; eigenstates 1 and 4 are

also entangled (much more weakly) by the dipole-dipole interaction, with eigenenenergies that

shift downwards and upwards nonlinearly with increasingΩ/B, respectively. Forµε/B > 0, the

concurrences increase withΩ/B for eigenstates 1 and 4, and decrease for eigenstate 3. By virtue of

the symmetry imposed factorization noted above, eigenstate 2 retains the same Bell form despite

the Stark and dipole-dipole interactions which affect its energy, and its concurrence is always unity.

For smallΩ/B << 1, eigenstate 3 also becomes independent of the dipole-dipole interaction

and coincides with eigenstate 2 in both energy and concurrence. Forµε/B = 4.9, as seen in

Fig. l(b), theC1 = 〈1|cosθ|1〉 factor that appears in seven of the matrix elements in Eq. (13)

vanishes. Consequently, the energy of eigenstate 4 then becomes independent of the dipole-dipole

interaction, although its wavefunction and concurrence do not.

Figure 5 shows, forµε/B = 0 and 2, how the contributions of the basis states to each of the

eigenstates vary with the strength of the dipole-dipole interaction. This illustrates that forΩ/B <<

1 the eigenstates rapidly approach those forΩ = 0. Indeed, we find that forΩ/B < 0.04 the

concurrences for eigenstates 1 and 4, which rapidly become the same, are proportional toΩ/B

within better than 1%. Thus,

C12 = K(x)[Ω/B] (18)

where the proportionality factorK(x) is a function ofx = µε/B. At the zero-field limit,K(0) = 1/6.

In Appendix C we describe a numerical analysis that provided an accurate approximate formula,

K(x) = A1 +
A2

1+ exp[(x − x0)/△x]
(19)

This is plotted in Fig.6 and values of the four parameters are listed in Appendix C.

Figure 7 displays forΩ/B = 0.1, 1 and 6 the eigenenergies and concurrences versusµε/B from

0 to 8 for the four eigenstates. As the dipole-dipole interaction increases 60-fold over this range, its

effect on the eigenstate energies is relatively modest, whereas the concurrences change markedly,

in response to variations in eigenvector compositions such as illustrated in Fig. 5.

Figure 8 gives a contour plot of the thermal pairwise concurrence derived from Eq.(11) as a

function ofΩ/B and kBT/B. It pertains toµε/B = 3; we found that normalizing the thermal
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concurrence to its value for T= 0 andΩ/B = 1 removed most of the variation withµε/B from

such contour plots. For T= 0, the thermal concurrence coincides with that for the ground state,

eigenstateΨ1. However, askBT/B increases, the thermal concurrence decreases and is always

smaller than the ground-state concurrence. This may seem odd, because Eq.(11) specifies a shift in

population that reduces the contribution from the gound state, while bringing in contributions from

the excited states. The eigenstates 2 and 3 then populated have large concurrence, so increasing

temperature might be expected to make the net thermal concurrence become larger than for the

ground-state, rather than smaller. The source of this behavior is indicated by the analytic solution

obtained in Appendix B for the zero-field limit,

C12(T) = C12(1)P1 −C12(2)P2 −C12(3)P3 − C12(4)P4 (20)

wherePi = (1/Z)exp(−Ei/kBT ) with Z(T ) =
∑

i exp(−Ei/kBT ). This shows that the excited states

indeed reduce the thermal concurrence, an effect traceable to Eq.(8) and which persists even for

largeµε/B.

Another striking aspect of Fig. 8 is that the concurrence vanishes along and outside a particular

contour. That contour defines mutually dependent maximum values ofkBT/B and minimum values

of Ω/B required to obtain nonzero concurrence. WhenΩ/B << 1, we find that a modified form of

Eq.(18) represents the thermal concurrence,

C12(T) = max{0,K(x)[y − y0(x, z)]} (21)

Here x = µε/B; y = Ω/B; andz = kBT/B is the scaled temperature. Fig. 9 gives a contour plot

of y0 = Ωc/B, the critical dipole-dipole coupling required for nonzero concurrence. Some further

details are included in Appendix B.

The original proposal by DeMille and kindred papers on quantum computing with trapped polar

molecules [1, 2, 5, 7, 10, 13, 16] discuss for several examples the range of experimental conditions

deemed suitable and acceptable. For trap temperatures of the order of a microkelvin or below,

the typical values ofkBT/B are a few times 10−6, so indicate that only ground-state entanglement

would be significant. The external field strengths considered are typically a fewkV/cm. The

spacing between optical lattice sites,r = λ/2, is half the optical lattice wavelength. The optimal
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choice ofλ ranges between 1 to 0.3 microns, depending on electronic transition frequencies of

the molecules to be trapped [13]. From these parameters and molecular data, values ofΩ/B are

small; we find for a dozen potential candidate molecules values ranging between 4× 10−6 (for

KCs) to 2× 10−4 (for CsI). A favorite candidate is SrO (µ = 8.9D, B = 0.33cm−1, λ = 1 micron),

for whichΩ/B ∼ 10−5. In that regime, the concurrence is simply proportional toΩ/B, so can be

easily evaluated from Eq.(18) and/or (21) without use of the rather elaborate prescription outlined

in Eqs.(6-14).

IV. FREQUENCY SHIFT FOR TWO COUPLED DIPOLES IN PENDULAR STATES

In the regionΩ/B < 10−4, the concurrence of the ground eigenstate is very small, typically

< 10−5. However, such meager entanglement in eigenstates can still be adequate for quantum

computing, as demonstrated with NMR versions of quantum computers [40]. The key aspect is that

although entanglement needs to be large for some quantum computing algorithms, it need not be

appreciable or even present in the ground eigenstate of the system; it can be induced dynamically

during operation of the computer [41]. Here, for the polar molecule case, we consider this aspect.

We also evaluate an eigenstate property, a small frequency shift, distinct from but related to the

pairwise concurrence, that is important for quantum computing.

The need for selective excitation in operation of quantum logic gates [35, 42, 43] is an essential

feature. Taking the 2-qubit CNOT gate as an example, its operation requires that manipulation of

one qubit (target) is perceptively affected by the state of the other qubit (control). In our case, the

qubits are pendular states that can be accessed by microwave transitions, which offer high spectral

resolution. As resolution has a crucial role, we now suppose the external field differs enough at

the two dipole sites (denoted unprimed and primed) to supply distinct addresses for the sites (cf.

Fig. 1(a), green dashed curve).

SinceΩ/B is so small, we first omit the dipole-dipole interaction and, as illustrated in Fig. 10,

consider transitions among the pendular eigenstates of Eq.(12). Although in this limit the ground-

state concurrence is zero, as seen in Eq.(18), it is possible to generate states of large concurrence

by use of resonant pulses [41, 44]. Start by applying a pulse resonant with the transition denoted
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ω1, between|00〉 and|01〉, which has energyW ′
1−W ′

0. Note thatω1 needs to be well-resolved from

the transitionω3, between|00〉 and |10〉, which has energyW1 − W0. The separation thus comes

from the different values of the external field at the two sites (plus a dipole-dipole contribution,

in higher order). The requisite field strength difference,ε′ - ε, can be readily determined from

another approximation formula,

(W1 −W0)/B = A1 +
A2

1+ (x/x0)
p (22)

by comparing results forx = µε/B andx′ = µ′ε′/B; the accurate fit obtained (better than 1% except

nearx = 0) is displayed in Fig. 11 and the four parameters in Eq.(22) are given in Appendix C.

The amplitude and duration of theω1 pulse can be adjusted to make it aπ/2 pulse, which will put

the system in the state 2−1/2(|00〉 + |01〉).

Next, to complete the CNOT gate, apply a pulse resonant with the transitionω2 between|01〉

and |11〉. This needs to be well-resolved from transitionω3 between|00〉 and |10〉. However, in

our initial approximation, bothω2 andω3 have the same transition energy,W1 −W0. Hence, weak

as it is, the dipole-dipole interaction is seen to have an essential role: to introduce a frequency

shift, △ω = ω3 − ω2, adequate for unambiguous resolution. If that is fulfilled, the amplitude and

duration of theω2 pulse can be adjusted to make it aπ pulse. Thereby the system will be put in

the state 2−1/2(|00〉 + |11〉). This result of a CNOT gate is to first approximation a Bell state (aside

from small corrections of orderΩ/B), so its concurrence will be near unity. It is not an eigenstate,

so will evolve with time but in principle would remain nearly fully entangled until degraded by

other interactions.

If now the dipole-dipole terms from Eq.(13) are included to first order, we obtain

ω1 = 〈01|Ĥ|01〉 − 〈00|Ĥ|00〉 = W ′
1 −W ′

0 + ΩαC0(C
′
1 −C′0) (23a)

ω2 = 〈11|Ĥ|11〉 − 〈01|Ĥ|01〉 = W1 −W0 + ΩαC
′
1(C1 −C0) (23b)

ω3 = 〈10|Ĥ|10〉 − 〈00|Ĥ|00〉 = W1 −W0 + ΩαC
′
0(C1 −C0) (23c)

ω4 = 〈11|Ĥ|11〉 − 〈10|Ĥ|10〉 = W ′
1 −W ′

0 + ΩαC1(C
′
1 −C′0) (23d)

whereΩα = Ω(1− 3cos2α). Thus, the key frequency shift is given by

△ω = ω3 − ω2 = ω4 − ω1 = Ωα(C1 − C0)(C
′
1 −C′0) (24)
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For givenΩα, the frequency shift△ω depends only onx andx′, which determine at the respective

sites the difference in the effective dipole moment projectionsC0 andC1 along the external electric

field, specified in Eq.(14). To provide a convenient means to evaluate Eqs.(23) and (24) we again

fitted our numerical results to obtain accurate approximation formulas,

C0(x) = A1 +
A2

1+ (x/x0)
p (25)

C1(x) = A0 +
A1

1+ exp[(x − x1)/△x1]
+

A2

1+ exp[−(x − x2)/△x2]
(26)

These functions are plotted in Fig. 11, together withC0 − C1, and the fitted parameters are given

in Appendix C.

Since for smallΩ/B, both the concurrence and△ω are proportional toΩ/B, the frequency shift

provides an equivalent measure of entanglement. When theε-fields differ at the two sites, Eq.(18)

still provides a very accurate approximation forC12(x, x′), merely by replacing the proportionality

factor by the geometric mean, [K(x)K(x′)]1/2. The concurrence (which involvesCX, the exchange

interaction term) is in principle different from△ω but both have about the same magnitude. The

frequency shift is much more relevant for quantum computing, because△ω is directly involved in

the CNOT gate.

Also important, in addition to the pulse shapes which affect the population transfers, are the

durations of the resonant pulses required to resolveω1 andω2 fromω3; these must satisfyτ31 >>

1/|ω3 − ω1| andτ32 >> 1/|ω3 − ω2|. For τ31 the lower bound usually can be made very low,

permitting a short pulse duration. This holds because△ε as well as dipole-dipole terms contribute

to |ω3 −ω1|, which thus can be made large by choice of theε-field gradient, regardless of whether

Ωα is extremely small. In contrast, forτ32 the separation△ω = |ω3 − ω2| depends only on the

dipole-dipole interaction. The smaller△ω is, the longer theω2 pulse duration has to be in order

to complete the CNOT operation. Although larger△ω allows a shorter pulse duration,△ω must

not be so large that it becomes comparable to or larger than the addressing shift produced by△ε,

thereby thwarting correct identification of the qubits.
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TABLE I: Illustrative CNOT Gate Implementationa .

µε/B x = 1 x′ = 1.01 x′ = 1.10 x = 3 x′ = 3.03 x′ = 3.30

(W1 −W0)/B 2.2709 2.2759 2.3218 3.5614 3.5831 3.7789

C0 0.30165 0.30404 0.32487 0.57922 0.58149 0.60051

C1 -0.16467 -0.16573 -0.17461 -0.16362 -0.16150 -0.14115

C0 −C1 0.46632 0.46977 0.49948 0.74284 0.74298 0.74165

(ω1 − ω3)/B 4.99E-3 5.09E-2 2.17E-2 2.17E-1

△ω/B 2.19E-6 2.33E-6 5.52E-6 5.51E-6

C12 1.20E-6 1.17E-6 3.57E-7 3.34E-7

aFor Ωα/B = 10−5; x = µε/B, x′ = µε′/B. As the quantities in the lowest three rows are functions of

bothx andx′, their values are listed in thex′ columns. There E-n denotes a factor of 10−n.

Table I provides specific numbers pertaining to the SrO example. From Sec.III, we takeΩα/B =

10−5. As representativeε-field values, we usex = 1 and 3 for site 1 and and takex′ higher by 1%

or 10% for site 2. From Eqs.(23), the transition frequenciesω1 = ω4 andω2 = ω3 (in units ofB)

to 5 or 6 significant figures. The frequency difference that must be resolvable for the first step of

the CNOT operation,ω1 − ω3, is approximately just△△W = (W ′
1 −W ′

0) − (W1 −W0). From Fig.

11, this is seen to grow about linearly with bothx andx′ − x. The values in Table I (third row from

bottom) range from> 10−3 to > 10−1 (in units ofB). To accommodate more dipole qubits, it may

be desired to make much smaller theε-field differences between sites; steps with△x = 0.01%

were proposed by DeMille [1]. That might encounter engineering limitations, but in principle

the proportionally smallerω1 − ω3 difference could still be readily resolved. For the second step

of the CONT operation the crucial frequency shift,△ω = ω1 − ω3 varies only modestly withx

and practically not at all withx′ − x. The values of△ω/B in Table I (second row from bottom)

range between 2 and 6× 10−6; in frequency units, this range is 20 to 60 kHz. Smaller still are

the corresponding values of the concurrence (bottom row); also insensitive tox′ − x but, in accord

with Fig. 6, varying more rapidly withx.

Figure 12 exhibits for both the△ω shift and concurrence the variation withα, the angle between
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the direction of the electric field and the axis between the dipoles. This dependence enters via the

factor (1−3cos2α) in the dipole-dipole interaction, Eq.(5), which emerges directly in the△ω shift,

Eq.(24), and by a more complex route propagates into the concurrence, via Eq.(13). Tilting the

field direction to makeα = 54.73◦, the ”magic angle”, provides a simple means to shut off the

entanglement. That is a useful option, awkward to attain in other ways [7, 13].

V. CONCLUSIONS AND PROSPECTS

In this study, our chief aim has been to examine entanglement of polar molecules by the dipole-

dipole interaction and subject to an external electric field, for the prototype case of two diatomic

or linear1∑ molecules. This required use of qubits that are pendular states comprised of sums of

spherical harmonics. We focused on the pairwise concurrence and its dependence on three unitless

reduced variables, involving the dipole moments, field strength, rotational constant, dipole-dipole

coupling and temperature. We have considered a wide range of the parameters, to map general

features of the concurrence. However, for conditions envisioned for proposed quantum computers,

the dipole-dipole coupling is weak (Ω/B typically of order 10−4 to 10−6) and the concurrence

becomes very small (< 10−5). For that weak coupling realm, we found the△ω frequency shift

provides an equivalent measure of entanglement, directly related to observable properties and

hence preferable to the concurrence. We also obtained for both the△ω shift and concurrence in

the weak realm simple explicit formulas in terms of the reduced variables.

For quantum computing a crucial issue is whether△ω is large enough to enable theω2 transition

to be reliably distinguished fromω3 (and, equivalently,ω1 from ω4). For typical candidate polar

molecules, this requires resolving transitions separated by only tens of kHz. That would not be

feasible in conventional molecular spectroscopy. Under ordinary gas phase conditions, transitions

between molecular rotational or pendular states have line widths of the order of a few 100 kHz

[45]. For ultracold molecules trapped in an optical lattice, line widths may be much narrower.

Collisional broadening is eliminated and at microkelvin temperatures Doppler broadening is also

quenched (as trap conditions are in the Lamb-Dicke regime). It is encouraging that for ultracold

atoms extremely narrow line widths have been attained by exploiting ”magic” optical trapping
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conditions that are expected to be at least in part applicableto molecules [46]. At present, however,

no data have been reported on line widths for rotational transitions of ultracold molecules trapped

in an optical lattice and subject to an external electric field. In view of the small size of△ω, it

is important to obtain such data to assess the resolution attainable, since motion within the traps,

coupling to lattice fields, and inhomogeneity of the external field may introduce appreciable line

broadening.

We have sought to glean pertinent evidence from electric resonance spectroscopy of molecular

beams, as the beams are collision free and transitions are observed in an external electric field

(”Rabi C-field”). For BaO, both△M = 0, J = 0→ 1 transitions in the microwave region [47] and

△J = 0, |M| = 0 → 1 transitions in the radiofrequency region [48] have been observed, in fields

ranging from∼ 200− 500 V/cm. For the radiofrequency transitions, line widths were only about

2 kHz, consistent with just the dwell time in the C-field. But for the microwave transitions the

widths are much larger, 45 kHz; this is attributed both to the higher frequency of the transitions

and to experimental conditions that render more significant Doppler broadening and nonunifor-

mity of the field, especially in the entrance and exit fringe regions [49]. The Doppler and dwell

time contributions are not relevant to inferring what might be expected for trapped BaO (or SrO).

Broadening by inhomogeneity of the external field is relevant but depends very much on experi-

mental particulars. The transitions of interest, depicted in Fig. 10, occur in the microwave region

and involve Stark fields typically ten-fold larger than used in the electric resonance spectroscopy,

so the line widths might be significantly broadened due to field inhomogeneity. These observations

do not permit firm conclusions about the resolution issue, but it decidedly poses an experimental

challenge.

This discussion pertains only to the choice of qubits we have considered, pendular states of

linear polar molecules, which involve transitions that changeJ̃ but not M. The resolution issue

motivates examining other choices for qubits. For instance, states with the sameJ̃ but different

M could be used. Other options, particularly use of hyperfine or nuclear spin states instead of

pendular states, have been suggested as means to reduce sources of decoherence [1, 2, 13, 16]. As

yet, the size of△ω for any qubit choice other than that used in this paper remains to be determined.

We intend to extend the treatment developed here to other choices for qubit basis states as
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well as to larger numbersN > 2 of dipoles. In preliminary work on linear and planar arrays of

dipoles up toN = 8, we find, as expected, the maximum pairwise concurrence occurs for next-

neighbor dipoles, although that for non-nearest ones is significant. Also in prospect is an analogous

treatment of the proposed coupling of polar molecules via microwave strip-lines [16]. There the

entangling interaction differs from direct dipole-dipole interactions, but again the proposed qubits

are pendular states.

Another pendular variant inviting attention is use of polar symmetric top molecules. The|0〉

and |1〉 qubits can be selected as|J,K,M〉 = |1, 1,−1〉 and |1, 1,+1〉, which are degenerate in the

field-free limit and thus have a first-order Stark effect [45]. Even in a weak electric field, these

states are strongly oriented along and opposed to the field, with equal and opposite projections.

Moreover, the effective dipole moments do not depend on the field strength so low fields can be

used if necessary to reduce line broadening, without the penalty imposed by quenching of effective

dipoles that would occur for the second-order Stark effect. At first blush, the symmetric top option

appears to be disallowed because transitions between theM = -1 and+1 Stark states violate the

selection rules,△M = 0 or △M = ±1. But the prohibition is not absolute. Because the optical

lattice perturbs cylindrical symmetry about the field,M is not strictly a ”good” quantum number,

so the△M selection rule is relaxed. Moreover, if the molecule contains an atom with nuclear spin

I > 1/2, and hence an electric quadrupole moment, transitions with△M = ±2 become allowed.

For instance, a deuterium nucleius (I = 1) makes△M = ±2 transitions facile in Stark spectra [50].

Other symmetric top options for qubits are inversion doublets (e.g. in NH3) or internal rotation

states associated with hindered torsional motion (e.g. CH3CF3); these offer strong dipole-allowed

transitions.

Previous studies of entanglement, both for polar molecules [7, 32] and for magnetic spins

[23, 27–31], have considered primarily domains where the concurrence is large (> 0.1), and have

focused on means to tune the entanglement to attain such domains. For polar molecules, that

requiresΩ/B > 1. Recently, it was suggested that such largeΩ/B could be attained for dipole

arrays by exploiting nanotraps with lattice spacing of the order of only 10 nm [32]. However,

as emphasized in Sec. IV, for quantum computing large entanglement in the ground eigenstate

is not required. Indeed, reducing the array spacing so markedly would strongly foster inelastic,
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spontaneous Raman scattering of lattice photons and hence induce decoherence [1, 2, 13]. Such

considerations make small rather than largeΩ/B, and consequently weak rather than strong en-

tanglement in the ground eigenstate, actually preferable for quantum computing [37], provided

resolution of the△ω shift can be attained.
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APPENDIX A: DIPOLE-DIPOLE INTERACTION

The angular dependence of the dipole-dipole interaction, given in Eq.(4), is usually expressed

as

Φi j = cosβ − 3cosγicosγ j (A1)

whereβ is the angle between dipolesµi andµ j; anglesγi andγ j specify the orientation of the

dipoles with respect to the vectorri j between them. Ordinarily, it is natural (and done in all

textbooks) to express cosβ in terms of the anglesγ together with the azimuthal anglesφr about the

ri j axis. Thus, use

cosβ = cosγicosγ j + sinγisinγ jcos(φri − φr j) (A2)

which when combined with the -3cosγicosγ j term gives the familiar expression [51]. In the pres-

ence of the external electric field, we need to recastΦi j in terms of anglesθi andθ j that specify the

orientation of the dipoles with respect to the direction of the external electric field. Therefore, we
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use

cosβ = cosθicosθ j + sinθisinθ jcos(φEi − φE j) (A3)

cosγ = cosθicosα + sinθisinαcos(φEi − φEr) (A4)

where theφE are azimuthal angles about the field vectorE andα is the angle between the field

vector and theri j vector. The azimuthal factors can be expressed as

cos(φEi − φE j) = cosφEicosφE j + sinφEisinφE j (A5)

As M = 0 states, which do not depend on theφ angles, are chosen as the qubit basis states, in

evaluating matrix elements ofΦi j between these states the integrations overdφidφ j (from 0 to 2π)

eliminate all terms involving theφE angles. The net result is simply

〈Φi j〉φ = (1− 3cos2α)cosθicosθ j (A6)

The effect of integrating over theθ angles is just to replace inVdd the dipole momentsµi andµ j by

their effective values,µ〈cosθ〉. The effective dipole-dipole interaction hence reduces to

Vd−d = Ω(1− 3cos2α)〈cosθi〉〈cosθ j〉 (A7)

with Ω = µiµ j/r3
i j as a convenient scale factor.

APPENDIX B: ZERO-FIELD CASE

Forµε/B = 0, the Hamiltonian matrix reduces to diagonal terms from Eq.(12) and antidiagonal

elements from Eq.(13), and the pendular qubit basis states become simply|0〉 = Y00 and|1〉 = Y10.

The form of the Hamiltonian makes it equivalent to that for the Ising model for a system with two

qubits [52]. Diagonalization of the Hamiltonian yields the eigenenergies and eigenvectors given

in Table II as explicit functions ofΩ/B.
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TABLE II: Zero-Field limit for N = 2 dipoles.

i Eigenenergies,Ei/B Wavefunction,Ψi C12

1 2− 2(1+ ζ2)1/2 1√
1+α2

+

(|11〉 − α+|00〉) 2α+
1+α2

+

2 2(1− ζ) 1√
2
(|10〉 − |01〉) 1

3 2(1+ ζ) 1√
2
(|10〉 + |01〉) 1

4 2+ 2(1+ ζ2)1/2 1√
1+α2

−
(|11〉 − α−|00〉) 2|α− |

1+α2
−

whereα± =
[

1±
(

1+ ζ2
)1/2
]

/ζ, with ζ = Ω/6B

The density matrix for eigenstate 1, the ground-state, is

ρ(1) = |Ψ1〉〈Ψ1| =
1

1+ α2
+























































α2
+ 0 0 −α+

0 0 0 0

0 0 0 0

−α+ 0 0 1























































(B1)

That for eigenstate 2 is

ρ(2) = |Ψ2〉〈Ψ2| = +
1
2























































0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0























































(B2)

Theρ(3) matrix differs fromρ(2) by having+1 in place of each−1; theρ(4) matrix differs from

ρ(1) by havingα− in place ofα+. As these density matrices pertain to only two dipoles, they need

not be reduced further.

Obtaining the density matrices, ˜ρ(i), for the spin-flipped states, defined in Eq. (9), involves

shuffling the rows and columns ofρ(i) in accord with|00〉 ↔ |11〉 and|01〉 ↔ |10〉. This gives

ρ̃(1) =
1

1+ α2
+























































1 0 0 −α+

0 0 0 0

0 0 0 0

−α+ 0 0 α2
+























































(B3)
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and thus the product matrix is

ρ(1)ρ̃(1) =
1

(

1+ α2
+

)2























































2α2
+ 0 0 −α3

+

0 0 0 0

0 0 0 0

−2α+ 0 0 2α2
+























































(B4)

The eigenvalues of this matrix areλ1 = 4α2
+/
(

1+ α2
+

)2
, λ2 = λ3 = λ4 = 0. From Eq. (8), the

concurrence is,C12(1)= 2α+/(1+α2
+). Similarly, we find the concurrences for the other eigenstates,

given in Table I.

To evaluate the thermal concurrence, we need to set up the thermal density matrix

ρ(T ) =
4
∑

i=1

exp(−Ei/kBT ) |Ψi〉〈Ψi| =























































a 0 0 g

0 b d 0

0 d b 0

g 0 0 c























































(B5)

where

a =
α2
+

1+ α2
+

P1 +
α2
−

1+ α2
−

P4 (B6)

b =
1
2

(P2 + P3) (B7)

c =
1

1+ α2
+

P1 +
1

1+ α2
−

P4 (B8)

d =
1
2

(P3 − P2) (B9)

g = − α+

1+ α2
+

P1 −
α−

1+ α2
−

P4 (B10)

with

Pi =
exp(−Ei/kBT )

Z
(B11)

Then we find

ρ(T )ρ̃(T ) =























































ac + g2 0 0 2ag

0 b2 + d2 2bd 0

0 2bd b2 + d2 0

2cg 0 0 ac + g2























































(B12)
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and obtain the eigenvalues,

λ1 = (
√

ac − g)2, λ2 = (b − d)2, λ3 = (b + d)2, λ4 = (
√

ac + g)2 (B13)

Hence from Eq. (8), we obtain the thermal concurrence,

C12(T ) = max {0,−2(b + g)} (B14)

With theC12(i) of Table I, this gives Eq.(20) of the text,

C12(T ) = C12(1)P1 − C12(2)P2 −C12(3)P3 − C12(4)P4 (B15)

WhenΩ/B << 1, the ground state concurrence becomesC12(1) → Ω/6B, in accord with

Eq.(18) of the text, whereasC12(4) → Ω/6B and C12(2) = C12(3) = 1. Provided that also

kBT/B << 1, a first-order expansion of Eq.(B15) gives

C12(T ) ≈ C12(1)− ǫ2 − ǫ3, (B16)

whereǫ2 = P2/P1 << 1; ǫ3 = P3/P2 << 1 andP4/P1 <<< 1. Then

C12(T ) ≈ K(0) [Ω/B −Ωc/B] , (B17)

which has the form of Eq.(21) of the text withK(0) = 1/6 and

y0(T ) = Ωc/B = (ǫ2 + ǫ3)/K(0) = 12exp(−2B/kBT ) cosh(Ω/3kBT ) (B18)

This result for the zero-field case, although not useful in practice, illustrates how the excited

states are involved in creating a temperature dependent minimum level of dipole-dipole coupling,

Ωc/B, that is required to have nonzero thermal concurrence.

Figure 13 shows a contour plot ofC12(T ) for the zero-field case, derived from Eq.(B14). It is

qualitatively quite similar to Fig. 8 for the pendular case, over the same wide range ofkBT/B and

Ω/B.

APPENDIX C: REDUCED VARIABLE FORMULAS

In order to find a proper reduced variable formula, three steps are needed: (1) calculate enough

sample points to define well the exact curve; (2) find a function with adjustable parameters that
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enables fitting those points; (3) evaluate the parameters using a non-linear regression method.

For our curve fitting we use the Levenberg-Marquardt Algorithm [53], also called ”Chi-square

minimization”. Chi-square is defined as:

χ2 =

N
∑

i=1

[

Yi − f (xi; θ̂)
]2

(C1)

wherexi andYi are the independent and dependent variables for theith (i = 1, 2,...,n) sample points

of the exact curve;̂θ are the parameters to be fitted. The Levenberg-Marquardt algorithm iteratively

adjusts the parameters to get the minimum chi-square value, which corresponds to the best fit. The

input data for fitting Eqs.(19, 22, 25, 26) comprised our numerical results for the pendular case,

over the rangesx = µε/B = 0 to 8. Tables III - VI list the optimal values found for the parameters

and 95% percent confidence intervals. Atx = 0, the Eq.(19) fit givesK(0) = 0.17103, different

slightly from the exact zero-field limit,K(0) = 1/6. Likewise, atx = 0 the Eq.(25) and (26) fits

giveC0 = 0.005 andC1 = 0.00072 rather than the exact value of zero. The critical point forC1 to

change sign isx = 4.902, whereas Eq.(26) givesC1 = −0.00025, slightly different from zero.

TABLE III: Values of the parameters for Eq.(19).

Parameters Pendular Field-free CIa

A1 0.01092 0.00221 ±0.0003

A2 0.21953 0.24779 ±0.006

x0 0.96578 0.74035 ±0.05

△x 0.97429 0.86072 ±0.03

a 95% confidence interval; values listed are maximum found for the 2 curves

shown in Fig.6. BothR2 values are around 0.9981.Similarly accurate results

are found when Eq.(18) is generalized for different E-fields at the dipole sites

by replacingK(x) by [K(x)K(x′)]1/2.
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TABLE IV: Values of the parameters for Eq.(22).

Parameters Values CIa

A1 12.42379 ±0.0533

A2 -10.47646 ±0.0534

x0 8.77516 ±0.0534

p 1.5867 ±0.00527

a 95% confidence interval.R2 = 0.9999

TABLE V: Values of the parameters for Eq.(25).

Parameters Values CIa

A1 0.84855 ±0.00145

A2 -0.84355 ±0.00180

x0 1.6339 ±0.00508

p 1.2459 ±0.00539

a 95% confidence interval.R2 = 0.99994

TABLE VI: Values of the parameters for Eq.(26).

Parameters Values CIa

A0 -0.75212 ±0.0323

A1 1.04192 ±0.0336

A2 1.14092 ±0.0325

x1 -0.16241 ±0.0224

x2 3.1232 ±0.124

△x1 0.90544 ±0.0136

△x2 2.76286 ±0.0496

a 95% confidence interval.R2 = 1
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For convenience, we give formulas for the three unitless ratios, evaluated with customary units:

µε/B = 0.0168µ(Debye)ε(kV/cm)/B(cm−1);

Ω/B = 5.04× 10−9µ2(Debye)/r3(microns)/B(cm−1);

kBT/B = 0.695T (K)/B(cm−1).
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FIG. 1: (Color online) Stark states for a polar diatomic molecule in a1Σ electronic state [36], as functions

of µε/B, with µ the permanent dipole moment,ε the field strength,B the rotational constant. (a) Eigenen-

ergies, W, and (b) Matrix elements of orientation cosines; see Eq.(14). States used as qubits (red curves)

are labeled|0〉 and|1〉. In the field-free limit,|0〉 correlates with theJ = 0, MJ = 0 and|1〉 with the J = 1,

MJ = 0 rotational states. Dashed curve (green) in (a) shows energy for transition between qubit states,

△W = W1 −W0; that in (b) showsC0 −C1, difference between effective dipole moments, projections of the

molecular dipole on the field direction for pendular states|0〉 and|1〉.
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FIG. 2: (Color online) Coefficients of sums of spherical harmonics for pendular states|0〉 and|1〉, see Eq.(3).

Dashed curve for|1〉 indicates the coefficient ofY0,0 is negative.
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FIG. 3: (Color online) Angular distributions of the|0〉 and |1〉 pendular states for values ofµε/B between 0

and 8.
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FIG. 4: (Color online) Eigenenergies, numbered 1, 2, 3, 4 in order of increasing energy, and pairwise

concurrences of the eigenstates for two dipoles as a function of the dipole-dipole coupling constantΩ/B for

three values of the reduced electric field strength,µε/B = 0, 2 and 4.9.
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FIG. 5: (Color online) Eigenvectors of the four eigenstates for two dipoles as a function of the dipole-dipole

coupling constantΩ/B = 0 to 6 forµε/B = 0 (dashed curves) and 2 (solid curves).
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FIG. 6: (Color online) TheK(x) function of Eq.(18); solid curves show exact result (red) and fitted function

(blue) of Eq.(19) that pertains to pendular qubit basis, see Eq.(3). For comparison, dashed curve pertains to

field-free basis with|0〉 = Y0,0, |1〉 = Y1,0 (Cf. Table III, Appendix C).
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FIG. 7: (Color online) Eigenenergies and concurrences for the four eigenstates for two dipoles as a function

of reduced variables,µε/B for electric field andΩ/B for dipole-dipole coupling.
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FIG. 8: (Color online) Contour plot of thermal pairwise concurrence for two dipoles, forµε/B = 3. For

0 < Ω/B < 1, the maximum concurrenceC12(max) = 0.0473, occurs at T= 0,Ω/B = 1. The plot displays

normalized contours. Within each colored band, the variation ofC12/C12(max) is 0.1; thus the normalized

concurrence in the right most band (red) ranges from 0.9 to 1; in the next band (orange red), from 0.8 to 0.9,

etc. A striking feature is the large region (uncolored) whereC12 = 0. There, entanglement does not occur

unless the dipole-dipole coupling exceeds a critical value dependent on the temperature.
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FIG. 9: (Color online) Contour plot displayingy0(x, z) term in Eq.(21) vs.x = µε/B. Within each colored

band, the range ofy0 is 0.001; thus in the lowest colored band (magenta).y0 ranges between 0 and 0.001;

in the highest colored band (red),y0 is between 0.009 and 0.01.
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FIG. 10: (Color online) Schematic energy levels for qubit pendular eigenstates of N= 2 dipoles, in absence

of dipole-dipole interaction, thus corresponding to Eq.(12). Qubit basis states shown at left, eigenenergies

at right. Pairs of transitions involved in CNOT operation are indicated:ω1 transfers dipole 2 from|0〉 to

|1〉 with dipole 1 remaining in|0〉; thenω2 transfers dipole 1 from|0〉 to |1〉 with dipole 2 remaining in

|1〉. Analogously, the same result could be reached byω3 followed byω4. Transition energies (including

dipole-dipole terms to first-order) are given in Eqs.(23).
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FIG. 11: (Color online) Comparison of exact results (blue curves) with fitted approximation functions

(dashed red curves) for properties governing transitions among qubit states, Eqs.(23): pendular energy

difference, (W1 −W0)/B, cosine expectation values,C0 andC1 and their difference,C0 − C1; cf. Eqs. (22,

25, 26).
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FIG. 12: (Color online) Frequency shift△ω/B (left panels) and ground state concurrenceC12 (right panels)

as functions ofα, the orientation angle of the electric field. Curves are shown forΩ/B = 0.2 to 1.0 with

µε/B = 1 or 3.
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FIG. 13: (Color online) Contour plot of thermal pairwise concurrence for field-free case, prepared in same

format for comparison with Fig. 8 for the pendular case. Here,C12(max) = 0.1644 at T= 0,Ω/B = 1.
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